7 research outputs found

    Route selection impacts on achieving enhanced IMS QoS

    Get PDF
    ArticleThe different planes in the IMS interact via specific reference points to deliver multimedia services to the user. QoS provisioning for IMS communications has been standardized for access networks only, with the assumption of an over provisioned IP core. Effective provisioning of multimedia services requires performance guarantee along the complete path of the sessions. End-to-end QoS in IP networks is affected by the route traversed by the user traffic. Moreover QoS guarantees in one ISP domain are not effective for transit traffic exiting the domain. QoS extensions to exterior gateway routing protocols have been proposed to transfer route QoS information beyond one autonomous system (domain). This paper explores options for mapping inter-domain QoS information learnt on the media plane into control plane session information for IMS QoS control. Through testbed evaluations we show the effect of routing on delays experienced in IMS communications.The different planes in the IMS interact via specific reference points to deliver multimedia services to the user. QoS provisioning for IMS communications has been standardized for access networks only, with the assumption of an over provisioned IP core. Effective provisioning of multimedia services requires performance guarantee along the complete path of the sessions. End-to-end QoS in IP networks is affected by the route traversed by the user traffic. Moreover QoS guarantees in one ISP domain are not effective for transit traffic exiting the domain. QoS extensions to exterior gateway routing protocols have been proposed to transfer route QoS information beyond one autonomous system (domain). This paper explores options for mapping inter-domain QoS information learnt on the media plane into control plane session information for IMS QoS control. Through testbed evaluations we show the effect of routing on delays experienced in IMS communications

    A pricing proposal for a QoS enabled UMTS network

    Get PDF
    ArticleThird generation networks e.g. the Universal Mobile Telecommunications System (UMTS) provide higher data transfer rates which enables the transport of real-time multimedia traffic e.g. streaming video. The cost of Internet access over mobile networks remains high yet user demand for mobile services is increasing rapidly. In order for mobile computing to become viable, the deployment of charging schemes that would see the cost of communication reflect the utilization of resources on the network is necessary. A dynamic charging scheme is an attractive solution. When prices change, users need to indicate their willingness to continue using the service especially when a price increase is beyond the level they anticipated. In this paper we propose a charging scheme that relies on the congestion at the RNC of the UMTS to calculate pricing coefficients, which are in turn used in determining the charge incurred for using the network. The use of user profiles and network agents in the management of the charging scheme is also explored.Third generation networks e.g. the Universal Mobile Telecommunications System (UMTS) provide higher data transfer rates which enables the transport of real-time multimedia traffic e.g. streaming video. The cost of Internet access over mobile networks remains high yet user demand for mobile services is increasing rapidly. In order for mobile computing to become viable, the deployment of charging schemes that would see the cost of communication reflect the utilization of resources on the network is necessary. A dynamic charging scheme is an attractive solution. When prices change, users need to indicate their willingness to continue using the service especially when a price increase is beyond the level they anticipated. In this paper we propose a charging scheme that relies on the congestion at the RNC of the UMTS to calculate pricing coefficients, which are in turn used in determining the charge incurred for using the network. The use of user profiles and network agents in the management of the charging scheme is also explored

    Charging in IP multimedia networks

    Get PDF
    ArticleIMS charging can be performed at various planes of the IMS architecture. Different charging schemes may be utilized. The optimal charging scheme would be service dependent, but may also be influenced by user expectations. The 3GPP has standardized charging mechanisms, protocols and interfaces for IMS charging control; online and offline charging have been standardized. However, the design and development of charging systems is operator dependent. This paper presents an IMS charging prototype developed and implemented in C, in line with Open IMS research. The testbed supports flow level, subsystem level and content level charging for IPTV and VoIP. The testbed supports online and offline charging; it has been tested with the UCT IMS client and the Fokus Open IMS system. Testbed proof of concept and performance results are presented.IMS charging can be performed at various planes of the IMS architecture. Different charging schemes may be utilized. The optimal charging scheme would be service dependent, but may also be influenced by user expectations. The 3GPP has standardized charging mechanisms, protocols and interfaces for IMS charging control; online and offline charging have been standardized. However, the design and development of charging systems is operator dependent. This paper presents an IMS charging prototype developed and implemented in C, in line with Open IMS research. The testbed supports flow level, subsystem level and content level charging for IPTV and VoIP. The testbed supports online and offline charging; it has been tested with the UCT IMS client and the Fokus Open IMS system. Testbed proof of concept and performance results are presented

    Optimized IP-CANs to support best charged IMS scenarios

    Get PDF
    conference paper Published in Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium by IEEE.The pricing and charging mechanisms used in Next Generation Network (NGN) deployments will influence the profitability of network operators. NGNs present an opportunity for the success of service delivery platforms designed for IP multimedia communications, like the IP Multimedia Subsystem (IMS). Moreover, they present a platform for the delivery of a multitude of applications and services to users with different expectations and budgets. Although usage-based charging schemes are more meaningful, some recent successful Internet-based applications and services have attracted widespread usage due to enforcement of flat-rate pricing. The choice of a pricing scheme often has a one-to-one relation to the access network technology and the quality of service guarantee. Flat-rate pricing may easily be associated with best effort transport. This implies that some users opt for services without QoS guarantee when favoured by the pricing methodology. This paper explores scenarios where services with different QoS requirements available to users with varying pricing preferences can be provided over a set of IP connection access networks (IP-CANs) of the IMS.We explore the use of different pricing schemes for different IP-CANs of the IMS. We perform testbed evaluations and present results depicting the income patterns of networks enforcing different pricing and charging schemes for VoIP and IPTV services. Moreover, we emphasize the use of simplified pricing schemes on communication networks.The pricing and charging mechanisms used in Next Generation Network (NGN) deployments will influence the profitability of network operators. NGNs present an opportunity for the success of service delivery platforms designed for IP multimedia communications, like the IP Multimedia Subsystem (IMS). Moreover, they present a platform for the delivery of a multitude of applications and services to users with different expectations and budgets. Although usage-based charging schemes are more meaningful, some recent successful Internet-based applications and services have attracted widespread usage due to enforcement of flat-rate pricing. The choice of a pricing scheme often has a one-to-one relation to the access network technology and the quality of service guarantee. Flat-rate pricing may easily be associated with best effort transport. This implies that some users opt for services without QoS guarantee when favoured by the pricing methodology. This paper explores scenarios where services with different QoS requirements available to users with varying pricing preferences can be provided over a set of IP connection access networks (IP-CANs) of the IMS.We explore the use of different pricing schemes for different IP-CANs of the IMS. We perform testbed evaluations and present results depicting the income patterns of networks enforcing different pricing and charging schemes for VoIP and IPTV services. Moreover, we emphasize the use of simplified pricing schemes on communication networks

    Dynamic pricing for 3G networks using admission control and traffic differentiation

    Get PDF
    Published in Networks, 2005. Jointly held with the 2005 IEEE 7th Malaysia International Conference on Communication., 2005 13th IEEE International Conference on (Volume:2 )In the pricing of network resources, network operators and service providers aim at facilitating the use of the limited network resources in a manner that would encourage responsibility among the end-users and lead to the maximisation of profits. The optimum tariff rates used for charging the mobile services are affected by factors like the market forces affecting the industry. However, the tariff rates generally increase with the achieved QoS level. Next generation networks will offer higher QoS, hence users need incentives to utilise the enhanced capacity. In this paper, we propose a pricing approach that introduces service profiles into a DiffServ-enabled network, whose prices and QoS levels depend on the degree of congestion in the network. The use of the UMTS connection admission control to support the proposed pricing scheme is explored. An emulation testbed is used to evaluate the scheme.In the pricing of network resources, network operators and service providers aim at facilitating the use of the limited network resources in a manner that would encourage responsibility among the end-users and lead to the maximisation of profits. The optimum tariff rates used for charging the mobile services are affected by factors like the market forces affecting the industry. However, the tariff rates generally increase with the achieved QoS level. Next generation networks will offer higher QoS, hence users need incentives to utilise the enhanced capacity. In this paper, we propose a pricing approach that introduces service profiles into a DiffServ-enabled network, whose prices and QoS levels depend on the degree of congestion in the network. The use of the UMTS connection admission control to support the proposed pricing scheme is explored. An emulation testbed is used to evaluate the scheme

    Service outsourcing and billing in inter-domain IMS scenarios

    Get PDF
    ArticleResource sharing in commercial mobile networks may present operators with options to cut costs and prevent network churn. In resource sharing, when the network experiences resource constraints, the operator can negotiate with other reachable networks to outsource the provision of network access services. The revenue earned from user payments will be shared by the home operator and the serving operator. Operators participating in service outsourcing are faced with financial challenges with regard to network revenue sharing. Moreover, an operator’s users are placed under service control of the visited operator, a situation that may impact customer experience. On the other hand, the visited operator allocates network resources to visiting users, thus there is a risk of service blockage for home users. In this paper we explore resource sharing in inter-domain frameworks, and investigate factors that influence revenue distribution amongst involved operators. We develop strategies for use by operators to maximize revenue from resource sharing. This work is done in the domain of IP Multimedia Subsystem communications

    A Mobile solution for road accident data collection

    Get PDF
    Pan African International Conference on Information Science, Computing and Telecommunications (2014)Road accidents are a major cause of injuries and death in developing countries. It is crucial to build a road accident database and data retrieval system as a fundamental resource in improving road safety. Since the accident database needs to hold reliable data, accurate methods for accident data collection must be used. This study focuses on improving accident data collection by using a Smartphone-based application. The application's aim is to improve data collection, while supporting mobility, ubiquity and accuracy.The name of the application is CrashData; it has been developed and tested in Kenya. Using the application, data are sent to a central database for storage and can be retrieved by the same application. The type of information collected is determined by the Model Minimum Uniform Crash Criteria (MMUCC), National Institute of Statistics (NIS) and other accident data sets. Location information recording is supported and depends entirely on Smartphone inbuilt GPS module and Google places API.The application provides a web interface for office based managers, who can use Google maps to identify accident hotspots by mining location information from the database.Road accidents are a major cause of injuries and death in developing countries. It is crucial to build a road accident database and data retrieval system as a fundamental resource in improving road safety. Since the accident database needs to hold reliable data, accurate methods for accident data collection must be used. This study focuses on improving accident data collection by using a Smartphone-based application. The application's aim is to improve data collection, while supporting mobility, ubiquity and accuracy.The name of the application is CrashData; it has been developed and tested in Kenya. Using the application, data are sent to a central database for storage and can be retrieved by the same application. The type of information collected is determined by the Model Minimum Uniform Crash Criteria (MMUCC), National Institute of Statistics (NIS) and other accident data sets. Location information recording is supported and depends entirely on Smartphone inbuilt GPS module and Google places API.The application provides a web interface for office based managers, who can use Google maps to identify accident hotspots by mining location information from the database
    corecore